Mitochondrial targeting of the electrophilic lipid 15-deoxy-Delta12,14-prostaglandin J2 increases apoptotic efficacy via redox cell signalling mechanisms.

نویسندگان

  • Anne R Diers
  • Ashlee N Higdon
  • Karina C Ricart
  • Michelle S Johnson
  • Anupam Agarwal
  • Balaraman Kalyanaraman
  • Aimee Landar
  • Victor M Darley-Usmar
چکیده

Prototypical electrophiles such as the lipid 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) are well recognized for their therapeutic potential. Electrophiles modify signalling proteins in both the cytosol and mitochondrion, which results in diverse cellular responses, including cytoprotective effects and, at high doses, cell death. These findings led us to the hypothesis that targeting electrophiles to specific compartments in the cell could fine-tune their biological effects. To examine this, we synthesized a novel mitochondrially targeted analogue of 15d-PGJ2 (mito-15d-PGJ2) and tested its effects on redox cell signalling. Mito-15d-PGJ2 caused profound defects in mitochondrial bioenergetics and mitochondrial membrane depolarization when compared with 15d-PGJ2. We also found that mito-15d-PGJ2 modified different members of the electrophile-responsive proteome, was more potent at initiating intrinsic apoptotic cell death and was less effective than 15d-PGJ2 at up-regulating the expression of HO-1 (haem oxygenase-1) and glutathione. These results demonstrate the feasibility of modulating the biological effects of electrophiles by targeting the pharmacophore to mitochondria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products.

The molecular mechanisms through which oxidized lipids and their electrophilic decomposition products mediate redox cell signalling is not well understood and may involve direct modification of signal-transduction proteins or the secondary production of reactive oxygen or nitrogen species in the cell. Critical in the adaptation of cells to oxidative stress, including exposure to subtoxic concen...

متن کامل

Induction of the permeability transition and cytochrome c release by 15-deoxy-Delta12,14-prostaglandin J2 in mitochondria.

The electrophilic lipid 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) is known to allow adaptation to oxidative stress in cells at low concentrations and apoptosis at high levels. The mechanisms leading to adaptation involve the covalent modification of regulatory proteins, such as Keap1, and augmentation of antioxidant defences in the cell. The targets leading to apoptosis are less well defi...

متن کامل

Interaction of electrophilic lipid oxidation products with mitochondria in endothelial cells and formation of reactive oxygen species.

Electrophilic lipids, such as 4-hydroxynonenal (HNE), and the cyclopentenones 15-deoxy-Delta12,14 -prostaglandin J2 (15d-PGJ2) and 15-J2-isoprostane induce both reactive oxygen species (ROS) formation and cellular antioxidant defenses, such as heme oxygenase-1 (HO-1) and glutathione (GSH). When we compared the ability of these distinct electrophiles to stimulate GSH and HO-1 production, the cyc...

متن کامل

15-Deoxy-Δ12,14-Prostaglandin J2 Protects PC12 cells from LPS-Induced Cell Death Through Nrf2 pathway in PPAR-γ Dependent Manner

Introduction: The inflammatory response requires a coordinated integration of various signaling pathway including cyclooxygenase (COX). COX catalyzes the formation of prostaglandins from arachidonic acid. Among prostaglandins, 15-Deoxy-D12, 14-prostaglandin J2 (15d-PGJ2), an endogenous ligand of Peroxisome proliferator-activated receptor-gamma (PPAR-γ), has been demonstrated to have anti-inflam...

متن کامل

Rac1 modification by an electrophilic 15-deoxy Δ12,14-prostaglandin J2 analog

Vascular endothelial cells (ECs) are important for maintaining vascular homeostasis. Dysfunction of ECs contributes to cardiovascular diseases, including atherosclerosis, and can impair the healing process during vascular injury. An important mediator of EC response to stress is the GTPase Rac1. Rac1 responds to extracellular signals and is involved in cytoskeletal rearrangement, reactive oxyge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 426 1  شماره 

صفحات  -

تاریخ انتشار 2010